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Abstract. We establish a duality formula for the problem
Minimize f(x) + g(x) for h(x) +k(x) <0

whereg, k are extended-real-valued convex functions gnd belong to the class of functions that
can be written as the lower envelope of an arbitrary family of convex functions. Applications in d.c.
and Lipschitzian optimization are given.

Key words: Strict inequality constraint, Duality, d.c. Optimization, Lipschitzian optimization

1. Introduction

A duality theorem has recently been obtained concerning the minimization of the
difference of two convex functions (d.c. function) over a strict inequality d.c. con-
straint [5, Theorem 3.1, Proposition 3.1]. In this paper we address ourselves to the
same problem in the larger class of functions that can be written as the sum of an
extended-real-valued convex function and a lower envelope of continuous convex
functions.

More precisely, letX be a topological vector spacg, k : X — R = RU
{400} U{—00} two extended-real-valued convex functions, and fekic;, (h;) jes
be two arbitrary families of convex functions; denoting py:= inf;c; f; (resp.
h :=inf;c; h;) the lower envelope of f;);c; (resp.(k;);es), We are concerned
with the problem

(P): minimize f(x) + g(x) for h(x)+k(x) <O.

It appears that this class of problems covers a great variety of situations includ-
ing convex programming, d.c. programming, mixed d.c. Lipschitz programming,
and minimization problems involving the sum of a convex function and an upper
semicontinuous function, etc. Moreover, the fact that the convex funciamslk
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can both take the valuesoo and+oo gives much flexibility to the frame we have
chosen.

Although problem(#) is not convex, it is crucial to observe that the component
functions f;(i € 1), andh;(j € J) constitute a hidden convex part ¢¢?). So,
the main purpose of the paper is to formulate a dual variational principle for the
problem(#) by expressing its value in terms of the Legendre—Fenchel conjugate
of the functionsf; (i € 1), g, h;(j € J), k only.

2. Some facts and notations on convex duality theory

Throughout this pape¢X, Y) will be a pair of locally convex topological real
linear spaces paired in separating duality by a bilinear form we denotg)by
So, X andY are supplied with topologies compatible with this duality: each of
them can be identified with the space of continuous linear forms on the other.
With any extended-real-valued functioh : X — R U {+o0} U {—o0} is as-
sociated its Legendre—Fenchel conjug#tewhich is defined on Yoy f*(y) =
sup,.x ({(x,y) — f(x)) foranyy € Y. We denote by donf :={x € X : f(x) <
400} the domain off, and, for any real number, we set{f < r} ={x € X :
fx) <rh{f <r}={x€X: f(x) <r}. Given a subset of X we denote by

84 its indicator function(,(x) = 0if x € A, §4(x) = 40 if x € X\ A). When
dealing with the sum of extended-real-valued functigns .. , f, on X we adopt
the usual convention of convex analysis

(+00) + (—=00) = (—00) + (+00) = +00

and the related calculus rules (see [6, 7]).

It is well known that the Legendre—Fenchel conjugate of the 3ufn, f;
is strongly related to the infimal convolution of the Legendre—Fenchel conjugate
fi, ..., [,}. More precisely, let us recall that the infimal convolution of the extended-
real-valued functiongy’, ... , £, is defined by

(1o -0
i=1

Thus, the inequality
(it -+ )< ffo---of) 2

is always satisfied.
The Fenchel-Moreau—Rockafellar’s theorem [1, 6, 9] says that if the extended-
real-valued functiongs, ... , f, are convex, if they do not take the valaec, and
if
there existsx € dom f; N ---N dom f, such that at least — 1 of the f; are
continuous af
3)
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then,

(fit-+ " =fio--0f, (4)

with the infimum in (1) achieved for eaghe Y. It has been recently observed [8,
Theorem 1] that, under Assumption (3), (4) remains valid if the convex functions
take the value-occ. This result will be useful in the sequel. Together with (0),
another convention will be used throughout the paper: for any extended-real-valued
function f : X — R we set

Of = Sdomf . (5)
This amounts to saying that

0 x (+00) = +00,0x (—00) =0. (6)

3. General inequalities

In this section we just assume thati € 1), h;(j € J), g andk are extended-real-
valued functions orX; as in Section 1 we sef := inf,c; fi, h :=inf;c; h;. Let
us consider the valug(#) of the problem(),

v(P) = h(x)i+r]1€1(‘x)<0 (f(x)+gkx) .

Noticing thath + k = inf;c; (h; + k), one has
{h+k <0 = Jthj+k<0}.
jeJ

Thus,

v =infinf (@) +g00)

- j"e“; h,-(x)ka(x)<o !Q}C (fix) +8) .

Exchanging and gathering the infima one obtains

o . A
v(P) = (i,jl)re“;xj h_/(x)ka(x)<0 (/i) + &) - (7)
Let us set
Vi,j = h,-(x)ka(x)<o (filx) +gx))

forany(, j) e I x J.
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Observe that; ; = 400 whenever the constraitit; + k < 0} does not meet
the domain of the objective functiofy + g, that is domf;N domg. This situation
occurs exactly when dorfin domg is included in{i; + & > 0} or, in other words,
when

inf (hj(x)+k(x))>0.

xedom f;N domg

Consequently, in Expression (7) we can restrict the set of indicgs € I x J to
the subset

A={G, el xJ: inf (hj(x) +k(x)) <0}, (8)

xedom f;N domg

so that
v(P) = inf v ;. )

(i,j)eA

Moreover, for anyi, j) € I x J one has clearly

vj 2, it G+ g() = Inf (00 + 800 + 8y sa<o ()

Now, taking (5) into account,

6{h,~+k§0} = Sup()\hj + )»k)
230

foranyj e J. This ensures that for all, j) € I x J,

vi,j 2 Inf (fi(x) +g(x) +Sup(Ah;(x) + Ak(x)))
xeX 10

> inf sup(fi(x) + g(x) + Ahj(x) + rk(x)) .
xeX 120

By the exchange inf-sup principle we obtain
vi,j = supinf (fi(x) +g(x) + Ah;(x) + Ak(x)) ,
2>0 xeX
or

vi,j = Sup — (fi + g+ Ahj +1k)*(0),
230
so that by (2)
vi,j = Sup — (ffO0g"O(Ah;)*0O(rk)*)(0)
230
that is
v ZSUp SUp — (7 () + 85 (2) + (W) () + (K) (va)
420 221:1 ye=0

forany(, j)e I x J.
Now one can state the announced general inequalities:
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THEOREM 3.1. Whatever the extended-real-valued functigh§ € 1), h;(j €
J), f, k may be, one always have the inequalities

v(P) > inf sup — (f; + g+ Mh; + Ak)*(0)
(i,j)eA >0

> inf sUp SUp = (£ () +8"(2) + ()" (va) + G (04))
CDEXSOTE L im0

with A as in (8).

4. Strong duality formulas

From now on the extended-real-valued functign, f; andh; for all (i, j) €

I x J will be convex. The following lemma established in [5] by using the inf-sup
theorem of Moreau is of particular importance for our purpose; it heavily involves
the conventions (0), (6).

LEMMA 4.1 [5, Lemma 3.1] Let p andg be two extended-real-valued convex
functions onX such that

dompn{g <0} #9.
Then,

q(lgiop(x) = q(lqu;op(x) = T;X;Q;‘( (p(x) +Ag(x)) .

Applying this lemma one has

vij = Maxint (fi(x) + g(x) 4 () + k()

for all (i, j) € A, and we can state:

THEOREM 4.2. U(ﬂj) = inf(,')j)eA ma)g;h?o infxex (fl(X) + g(x) + )\.h](X) +
Mk(x)) .

To go farther one needs additional assumptions.

THEOREM 4.3. Assume that the convex functiofigi € 7) andh;(j € J) are
either finite valued and continuous or identically equaltec and the condition

there existsc e domg N dom k s.t. g or k is continuous ak (20)

is satisfied. Then,

P) = inf max max — (f* * Ah)* Ak)* ,
wP) = I T i) (fFOD + 8% (02 + (h ) (v3) + (k) (7))
y1totyg=

with J (g, k) = {j € J : (13 Ok 080 ,)(0) > 0} .
(11)
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Proof. We first observe that iRf x (fi(x) + g(x) + Ah;(x) 4+ Lk(x)) is nothing
but—(fi +g+Ah; +1k)*(0); taking (10) into account we are in a position to apply
the formula (4). It comes out as

ig{ (fi(x) + g(x) + A (x) + Ak(x))
= max = (fff () + & (o) + Ahj)*(y3) + (Ak)*(ya)) .

¥1..Y4€Y
y1+y2+y3+y4=0

On the other hand, the satdefined in (8) coincides witlh x {j € J : (h; + k +

8domg)*(0) > 0}; by (4) and (10) we then havé = I x J(g, k), and (9) entails

(11). O

REMARK . TakingJ = {1}, hy = h = 0, andk = —1, problem(#) becomes an
unconstrained problem:

minimize f(x) + g(x) for xe X .

Assuming that dong £ @ we getJ (g, k) = {1}; it then easily follows from (11)
that

in}‘( (f(x)+glx) = in}‘ max — (f7(y) + g" (=) .
x€ iel yeY

There is another way to obtain a duality formula. Indeed, observe that for any
(i, j) € A one has (see Lemma 4.1)

nf  (fi(x) +gx)) .

|
hj (0)+k(x)<O

(fi(x) +g(x)) =

v j = inf
' hj(x)+k(x)<0

It follows that
vij = ((fi +8)08_p;1<op(0), forall (@, j)eA.

Assuming that all the above functionf$, g, &, k coincide with their biconju-
gate (i.e. belong t@' (X)), it is possible to obtain, under additional assumptions,
the relation

Vi,j = ((f,*Dg*) + (Si{hﬂrkgo})*(o) . (12)

More precisely, let us assume thdtis finite valued and continuous for the Mackey
topology (Y, X). Then (see the proof of [6, Prop. 9.b{)f; + g)* = f*Og* is
finite valued (because dorfi meets donyg) and (Y, X)-continuous. By (4) we
then have,

(/788" + 0L, 1acop)” = (ff B8 08T, <oy
= (fi +8)00_n;+k<0) »
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so that, under the above assumptions, (12) holds.
Now, by applying Lemma 4.1, observe that

_57{h1+k<0}(y) = h,-(x)|+nkf(x)§0 (x,y) = T;E)X_ (Ahj + 1k)*(—y) (13)
forall j € J such that{h; +k < 0} # ¢, and ally € Y. Assuming that the
functionsh; are continuous and finite valued or identicatyo, it follows from
(4) and (13) that

8 14k <o) () = MIN[(4h)7 0 (A" (=))] - (14)

We are now in a position to state the following result:

THEOREM 4.4. Assume thay; (i € I), g, k belong toI" (X) with g* finite-valued
and (Y, X)-continuous, and thak;(j € J) is finite-valued and continuous or
identically —oo; then

v(P) = inf sup sup — (f"(y1) + g (v2) + Ah;)*(y3) + (Ak)*(va))
(i,j)eA 2>0 ){...::,49/0
Y1t tyg=

withA={@G, j)el xJ: inf (hj(x) +k(x)) <0} .

xedom f;Nndomg

Proof. It follows from (9), (12) and (14) that
v(P) = inf supmax — ((ff0g") () + ((Ah)* TAK)")(—y))

(,))EA yey 220

inf sup — ((ff0g") O((Ah))"O(1k)"))(O0) ,
(i.)€A x>0

and the result follows from the associativity of the infimal convolution. O

5. Applications
5.1. DUALITY IN D .C. PROGRAMMING

In this section we extend some recent results of the authors concerning the d.c.
program below

(P : minimize g1(x) — g2(A(x)) for k1 (x) — ko(B(x)) <0,

whereA : X — P (resp.B : X — R) is a linear continuous operator fromto
anotherf.c.s. P (resp.R) paired in duality withQ (resp.S), g1, k1 are extended-
real-valued convex functions oK, g» = g3* € I'(P)) andk, = k3* (i.e.kz €
[ (R)).
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In order to apply the results of Section 4, let us notice that fat all X

—g2(A(x) = inf (=(A(x),q) +&5(q) .

gedomgs

Denoting byA* the transpose oA we then have

fi=—(g0A)= inf (—(,A%q)+8q)) .

gedomgs
In the same way,

h:=—(kyoB)= inf (—(, B*(s)) +k5(s)) .
sedom#k;
Applying Theorem 4.2 wittg = g1, k = k; and f, h as above we obtain the
following result that extends Theorem 3.1 of [5]:

THEOREM 5.1. Assume thag,, k; are extended-real-valued convex functions on
X, g» e I'(P), andk, € T'(R); then,

v = inf max(g(g) +aks(s) = (g1 -+ M) (A%(@) + 2B () .
whereA = {s € S : k3(s) — (k1 + Sdomg,)*(B*(s)) < 0} .

Proof.We have herd = domgj, / = dom&k; , andforall(g,s) € I x J, f, =
—(-, A*(q)) + &5(q), hy = —(-, B*(s)) + k3(s). It follows easily that the sef
defined in (8) coincides with dorg; x {k5 — (k1 + ddomg,)™ © B* < O} ; the rest
of the proof is straightforward. O

One can complete Theorem 5.1 in two directions:

1. Assuming the existence ofe dom g; N domk; whereg; or kq is continuous
we have [see (4){g1 + Ak1)* = g7 O(Mky)* forall A > 0, and(ky + Sgomg,)* =
ki Odgom,, With the exactness of the above infimal convolution:

2. Assuminggy, k1 € I'(X) with gj finite-valued andr (Y, X)-continuous we
have by Theorem 4.4

v(P1) = Inf sup(gr(q) + rky(s) — (g1 0 (Ak1)*)(A*(q) + AB*(s))) ,
(¢.9)€QxA >0

with A = {k5 — (k1 + ddomg,)* © B* < 0}, a d.c. constraint.

REMARK . Ofcourse, Theorem 5.1 specializes in various situations. For instance,
if k; = 0 we get

kz(Bi(r](f))>0 (g1(x) — g2(A(x)))

= ol o MEX(82(9) + M3 (5) = 81(A™(9) +AB(9)))

With A = (k3 — 8jomg, © B* < O},
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If, moreover,g = 0 (henceg; = §;0;) we have (extending [4, Theorem 4.1] and
[10, Corollary 4.6])

o Bj(rp‘))>0g1(x) = Inf max (Ak3(s) — g1 (AB*(5))) .

5.2. DUALITY FOR MIXED D.C.-LIPSCHITZ PROGRAMS

Assume now thak is a normed space with norfh||; we denote by || the dual

norm of the topological dudl of X: for anyy € Y, ||yll« = sup (x, y), and by
lIxl1<1

B, the closed unit ball of” with center at the origin. Lef be a Lipschitz function
on X with ¢ as Lipschitz constang : X — R an extended-real-valued convex
function, and leky, k,, B be as in Section 5.1). We are concerned with the problem

($2) : minimize f(x) + g(x) for ki(x) —kx(B(x)) <O.
As f is c-Lipschitz one has
f) =inf (c|lx —ull + f(u)) .
ueX
Therefore we shall takeé = X and for allu € I
Jux) =cllx —ull+ f(w), xeX,

which is a convex finite-valued and continuous functionXnAs in Section 5.1
we shall take/ = domk; and, for alls € domk3, hy, = —(-, B*(s)) + k3 (s) which
is either an affine continuous function or identicalyo. We have here

A=Xx A, A={ki— (ki + Sgomg)" © B* < 0} .
Applying Theorem 4.2 we obtain

v(Po) = inf max (f (u) + Ak (s)
(u,s)eX XA >0

o Inf (ellx = ull + g(x) + Aka() = ALx, B* ) - (15)

Let us introduce the functiop, defined byg, (x) = c||lx — u||, x € X, and
observe that

—jg}‘( (cllx —ull + g(x) + Ak1(x) — Alx, B*(5))) = (¢u + & + Ak1)"(AB™(s)) .
Assuming that
dx e domg Ndomk; : g or k; iscontinuous at x , (16)

we have (see (4, +g+rk1)* = (@,)*0g*O(Ak1)*, (k1+3ddomg)™ = k7 Oddom,
with exactness of the infimal convolutions.
As, moreover(yp,)* = 8., + (u, -), we have proved:
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THEOREMV5.2. Let f, g, k1, k2, B be as above and assume that (16) holds; then

v(P) = inf  max[(f(u) + Aki(s)
(u,s)eX xA A>0

+ max ((u, y1) — (8" (y2) + (k) (y1 — y2 + AB*(s))] ,

with A = {k7 — (k{O8Gom,) © B* < O} .
Let us describe the formula above for the problem
(P3) : minimize f(x) + g(x) for ki(x) <0

where f is c-Lipschitz, andg, k1 : X — R convex satisfying (16) and the Slater
condition{k; < 0} Ndom g # @. By [5, Proposition 2.1] we then haug$3) =

. En)f . (f(x) + g(x)) andtakingk, = 0, B = 0in Theorem 5.2, we get (since
1(x)<

A = {0}, k} = 8,0, B* = 0),

U(ﬂ’3)=bi2£ WAI;%X f(u)+‘m§§c ((u, y1) = (" (y2) + (AkD)* (y1—¥2)))
yoe¥

Assuming, moreover, thgt= 0 and i}pfkl < 0, we derive

klg))f gof (x)—klg)rg;;0 f(x)= inf T;})X[f (u)+m(3|§>g<c ((u, y1) — (kD) *(y)]
a duality formula for the minimization of a Lipschitz function over a convex in-
equality constraint (see [3] for the relevance of such problems). Concerning the
minimization of a Lipschitz functiory subject to a reverse convex inequality con-
straint we have, taking = k; = 0 andB = idy in (15), and assuming that

ko € T'(X), ip{f ko < 0:

c

1511

inf _ f(x) =inf inf (f(u)+

ko(x)>0 ueX sedomkiy
s#0

(k3(s) — (u, S))+)
where(k3(s) — (u, s))+ = max (k3(s) — (u, s), 0).

6. Conclusion

Many duality results can be derived from the general scheme we have presented in
Section 4; in a supplement of the classes of functifys, considered in Section 5,

one may also consider the class of upper semicontinuous (u.s.c.) functions. Indeed,
every u.s.c. functiorf on the normed space which is majorized by — ¢||x —
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|| + @, ¢ > 0, € X,& € R, can be written as follows (see for instance [2,
Theorem 3)):

f)=inf inf (c||lx —ul|l+ f(u)) forall xeX;
c>c  ueX

in other words, every u.s.c. functiofi suitably majorized is the lower envelope

of a family of convex continuous functions. Consequently, our results can also be
applied to the minimization of the sum of a convex function and an u.s.c. function
under a d.c. inequality constraint.
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