
Journal of Global Optimization13: 317–327, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

317

A General Duality Scheme for Nonconvex
Minimization Problems with a Strict Inequality
Constraint

B. LEMAIRE and M. VOLLE
1University of Montpellier II, Laboratoire d’Analyse Convexe, Place Eugène Bataillon, F-34095
Montpellier 5, France;2University of Avignon, Department of Mathematics, 33 rue Louis Pasteur,
F-84000 Avignon, France

(Received 3 January 1997; accepted 30 December 1997)

Abstract. We establish a duality formula for the problem

Minimize f (x)+ g(x) for h(x)+ k(x) < 0

whereg, k are extended-real-valued convex functions andf , h belong to the class of functions that
can be written as the lower envelope of an arbitrary family of convex functions. Applications in d.c.
and Lipschitzian optimization are given.
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1. Introduction

A duality theorem has recently been obtained concerning the minimization of the
difference of two convex functions (d.c. function) over a strict inequality d.c. con-
straint [5, Theorem 3.1, Proposition 3.1]. In this paper we address ourselves to the
same problem in the larger class of functions that can be written as the sum of an
extended-real-valued convex function and a lower envelope of continuous convex
functions.

More precisely, letX be a topological vector space,g, k : X → R̄ = R ∪
{+∞}∪{−∞} two extended-real-valued convex functions, and let(fi)i∈I , (hj )j∈J
be two arbitrary families of convex functions; denoting byf := infi∈I fi (resp.
h := infj∈J hj) the lower envelope of(fi)i∈I (resp.(hj )j∈J ), we are concerned
with the problem

(P ) : minimizef (x)+ g(x) for h(x)+ k(x) < 0.

It appears that this class of problems covers a great variety of situations includ-
ing convex programming, d.c. programming, mixed d.c. Lipschitz programming,
and minimization problems involving the sum of a convex function and an upper
semicontinuous function, etc. Moreover, the fact that the convex functionsg andk
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318 B. LEMAIRE AND M. VOLLE

can both take the values−∞ and+∞ gives much flexibility to the frame we have
chosen.

Although problem(P ) is not convex, it is crucial to observe that the component
functionsfi(i ∈ I ), andhj(j ∈ J ) constitute a hidden convex part in(P ). So,
the main purpose of the paper is to formulate a dual variational principle for the
problem(P ) by expressing its value in terms of the Legendre–Fenchel conjugate
of the functionsfi(i ∈ I ), g, hj (j ∈ J ), k only.

2. Some facts and notations on convex duality theory

Throughout this paper(X, Y ) will be a pair of locally convex topological real
linear spaces paired in separating duality by a bilinear form we denote by〈, 〉.
So,X andY are supplied with topologies compatible with this duality: each of
them can be identified with the space of continuous linear forms on the other.
With any extended-real-valued functionf : X → R ∪ {+∞} ∪ {−∞} is as-
sociated its Legendre–Fenchel conjugatef ∗ which is defined on Yby f ∗(y) =
supx∈X (〈x, y〉 − f (x)) for anyy ∈ Y . We denote by domf := {x ∈ X : f (x) <
+∞} the domain off , and, for any real numberr, we set{f 6 r} = {x ∈ X :
f (x) 6 r}, {f < r} = {x ∈ X : f (x) < r}. Given a subsetA of X we denote by
δA its indicator function(δA(x) = 0 if x ∈ A, δA(x) = +∞ if x ∈ X\A). When
dealing with the sum of extended-real-valued functionsf1, . . . , fn onX we adopt
the usual convention of convex analysis

(+∞)+ (−∞) = (−∞)+ (+∞) = +∞
and the related calculus rules (see [6, 7]).

It is well known that the Legendre–Fenchel conjugate of the sum
∑n

i=1 fi
is strongly related to the infimal convolution of the Legendre–Fenchel conjugate
f ∗1 , . . . , f

∗
n . More precisely, let us recall that the infimal convolution of the extended-

real-valued functionsf ∗1 , . . . , f
∗
n is defined by

(f ∗1 · · · f ∗n )(y)

= inf

(
f ∗1 (y1)+ · · · + f ∗n (yn) : y1, . . . , yn ∈ Y,

n∑
i=1

yi = y
)
. (1)

Thus, the inequality

(f1+ · · · + fn)∗ 6 f ∗1 · · · f ∗n (2)

is always satisfied.
The Fenchel–Moreau–Rockafellar’s theorem [1, 6, 9] says that if the extended-

real-valued functionsf1, . . . , fn are convex, if they do not take the value−∞, and
if

there exists̄x ∈ domf1 ∩ · · · ∩ domfn such that at leastn− 1 of thefi are
continuous at̄x

(3)
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then,

(f1+ · · · + fn)∗ = f ∗1 · · · f ∗n , (4)

with the infimum in (1) achieved for eachy ∈ Y . It has been recently observed [8,
Theorem 1] that, under Assumption (3), (4) remains valid if the convex functions
take the value−∞. This result will be useful in the sequel. Together with (0),
another convention will be used throughout the paper: for any extended-real-valued
functionf : X→ R̄ we set

0f = δdomf . (5)

This amounts to saying that

0× (+∞) = +∞,0× (−∞) = 0 . (6)

3. General inequalities

In this section we just assume thatfi(i ∈ I ), hj(j ∈ J ), g andk are extended-real-
valued functions onX; as in Section 1 we setf := infi∈I fi, h := infj∈J hj . Let
us consider the valuev(P ) of the problem(P ),

v(P ) := inf
h(x)+k(x)<0

(f (x)+ g(x)) .

Noticing thath+ k = infj∈J (hj + k), one has

{h+ k < 0} =
⋃
j∈J
{hj + k < 0} .

Thus,

v(P ) = inf
j∈J inf

hj (x)+k(x)<0
(f (x)+ g(x))

= inf
j∈J inf

hj (x)+k(x)<0
inf
i∈I (fi(x)+ g(x)) .

Exchanging and gathering the infima one obtains

v(P ) = inf
(i,j)∈I×J

inf
hj (x)+k(x)<0

(fi(x)+ g(x)) . (7)

Let us set

vi,j = inf
hj (x)+k(x)<0

(fi(x)+ g(x))

for any(i, j) ∈ I × J .
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320 B. LEMAIRE AND M. VOLLE

Observe thatvi,j = +∞ whenever the constraint{hj + k < 0} does not meet
the domain of the objective functionfi + g, that is domfi∩ domg. This situation
occurs exactly when domfi∩ domg is included in{hj+k > 0} or, in other words,
when

inf
x∈domfi∩ domg

(hj (x)+ k(x)) > 0 .

Consequently, in Expression (7) we can restrict the set of indices(i, j) ∈ I × J to
the subset

A = {(i, j) ∈ I × J : inf
x∈domfi∩ domg

(hj (x)+ k(x)) < 0} , (8)

so that

v(P ) = inf
(i,j)∈A

vi,j . (9)

Moreover, for any(i, j) ∈ I × J one has clearly

vi,j > inf
hj (x)+k(x)60

(fi(x)+ g(x)) = inf
x∈X (fi(x)+ g(x)+ δ{hj+k60}(x)) .

Now, taking (5) into account,

δ{hi+k60} = sup
λ>0

(λhj + λk)

for anyj ∈ J . This ensures that for all(i, j) ∈ I × J ,

vi,j > inf
x∈X (fi(x)+ g(x)+ sup

λ>0
(λhj(x)+ λk(x)))

> inf
x∈X sup

λ>0
(fi(x)+ g(x)+ λhj(x)+ λk(x)) .

By the exchange inf-sup principle we obtain

vi,j > sup
λ>0

inf
x∈X

(fi(x)+ g(x)+ λhj(x)+ λk(x)) ,
or

vi,j > sup
λ>0
− (fi + g + λhj + λk)∗(0) ,

so that by (2)

vi,j > sup
λ>0
− (f ∗i g∗ (λhj)

∗ (λk)∗)(0)

that is

vi,j > sup
λ>0

sup∑4
`=1 y`=0

− (f ∗i (y1)+ g∗(y2)+ (λhj )∗(y3)+ (λk)∗(y4))

for any(i, j) ∈ I × J .
Now one can state the announced general inequalities:
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THEOREM 3.1. Whatever the extended-real-valued functionsfi(i ∈ I ), hj (j ∈
J ), f, k may be, one always have the inequalities

v(P ) > inf
(i,j)∈A

sup
λ>0
− (fi + g + λhj + λk)∗(0)

> inf
(i,j)∈A

sup
λ>0

sup∑4
`=1 y`=0

− (f ∗i (y1)+ g∗(y2)+ (λhj)∗(y3)+ (λk)∗(y4)) ,

withA as in (8).

4. Strong duality formulas

From now on the extended-real-valued functionsg, k, fi andhj for all (i, j) ∈
I × J will be convex. The following lemma established in [5] by using the inf-sup
theorem of Moreau is of particular importance for our purpose; it heavily involves
the conventions (0), (6).

LEMMA 4.1 [5, Lemma 3.1]. Letp andq be two extended-real-valued convex
functions onX such that

domp ∩ {q < 0} 6= ∅ .
Then,

inf
q(x)<0

p(x) = inf
q(x)60

p(x) = max
λ>0

inf
x∈X

(p(x)+ λq(x)) .

Applying this lemma one has

vi,j = max
λ>0

inf
x∈X

(fi(x)+ g(x)+ λhj(x)+ λk(x))

for all (i, j) ∈ A, and we can state:

THEOREM 4.2. v(P ) = inf(i,j)∈A maxλ>0 infx∈X (fi(x) + g(x) + λhj(x) +
λk(x)) .

To go farther one needs additional assumptions.

THEOREM 4.3. Assume that the convex functionsfi(i ∈ I ) andhj(j ∈ J ) are
either finite valued and continuous or identically equal to−∞ and the condition

there exists̄x ∈ domg ∩ dom k s.t. g or k is continuous at̄x (10)

is satisfied. Then,

v(P ) = inf
(i,j)∈I×J (g,k) max

λ>0
max

y1,... ,y4∈Y
y1+···+y4=0

− (f ∗i (y1)+ g∗(y2)+ (λhj )∗(y3)+ (λk)∗(y4)) ,

with J (g, k) = {j ∈ J : (h∗j k∗ δ∗domg)(0) > 0} .


(11)
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Proof.We first observe that infx∈X (fi(x)+ g(x)+ λhj(x)+ λk(x)) is nothing
but−(fi+g+λhj+λk)∗(0); taking (10) into account we are in a position to apply
the formula (4). It comes out as

inf
x∈X

(fi(x)+ g(x)+ λhj(x)+ λk(x))
= max

y1,··· ,y4∈Y
y1+y2+y3+y4=0

− (f ∗i (y1)+ g∗(y2)+ (λhj )∗(y3)+ (λk)∗(y4)) .

On the other hand, the setA defined in (8) coincides withI × {j ∈ J : (hj + k +
δdomg)

∗(0) > 0}; by (4) and (10) we then haveA = I × J (g, k), and (9) entails
(11). 2

REMARK . TakingJ = {1}, h1 = h = 0, andk = −1, problem(P ) becomes an
unconstrained problem:

minimizef (x)+ g(x) for x ∈ X .

Assuming that domg 6= ∅ we getJ (g, k) = {1}; it then easily follows from (11)
that

inf
x∈X

(f (x)+ g(x)) = inf
i∈I

max
y∈Y
− (f ∗i (y)+ g∗(−y)) .

There is another way to obtain a duality formula. Indeed, observe that for any
(i, j) ∈ A one has (see Lemma 4.1)

vi,j = inf
hj (x)+k(x)<0

(fi(x)+ g(x)) = inf
hj (x)+k(x)60

(fi(x)+ g(x)) .

It follows that

vi,j = ((fi + g) δ−{hj+k60})(0), for all (i, j) ∈ A .
Assuming that all the above functionsfi, g, hj , k coincide with their biconju-

gate (i.e. belong to0(X)), it is possible to obtain, under additional assumptions,
the relation

vi,j = ((f ∗i g∗)+ δ∗−{hj+k60})
∗(0) . (12)

More precisely, let us assume thatg∗ is finite valued and continuous for the Mackey
topologyτ(Y,X). Then (see the proof of [6, Prop. 9.b]),(fi + g)∗ = f ∗i g∗ is
finite valued (because domfi meets domg) andτ(Y,X)-continuous. By (4) we
then have,

((f ∗i g∗)+ δ∗−{hj+k60})
∗ = (f ∗i g∗)∗ δ∗∗−{hj+k60}
= (fi + g) δ−{hj+k60} ,
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so that, under the above assumptions, (12) holds.
Now, by applying Lemma 4.1, observe that

−δ∗−{hj+k60}(y) = inf
hj (x)+k(x)60

〈x, y〉 = max
λ>0
− (λhj + λk)∗(−y) (13)

for all j ∈ J such that{hj + k < 0} 6= ∅, and ally ∈ Y . Assuming that the
functionshj are continuous and finite valued or identically−∞, it follows from
(4) and (13) that

δ∗−{hj+k60}(y) = min
λ>0
[(λhj )∗ (λk)∗(−y)] . (14)

We are now in a position to state the following result:

THEOREM 4.4. Assume thatfi(i ∈ I ), g, k belong to0(X) with g∗ finite-valued
and τ(Y,X)-continuous, and thathj(j ∈ J ) is finite-valued and continuous or
identically−∞; then

v(P ) = inf
(i,j)∈A

sup
λ>0

sup
y1,··· ,y4∈Y
y1+···+y4=0

− (f ∗i (y1)+ g∗(y2)+ (λhj)∗(y3)+ (λk)∗(y4))

withA = {(i, j) ∈ I × J : inf
x∈domfi∩domg

(hj (x)+ k(x)) < 0} .
Proof. It follows from (9), (12) and (14) that

v(P ) = inf
(i,j)∈A

sup
y∈Y

max
λ>0
− ((f ∗i g∗)(y)+ ((λhj)∗ (λk)∗)(−y))

= inf
(i,j)∈A

sup
λ>0
− ((f ∗i g∗) ((λhj)

∗ (λk)∗))(0) ,

and the result follows from the associativity of the infimal convolution. 2

5. Applications

5.1. DUALITY IN D .C. PROGRAMMING

In this section we extend some recent results of the authors concerning the d.c.
program below

(P1) : minimizeg1(x)− g2(A(x)) for k1(x)− k2(B(x)) < 0 ,

whereA : X → P (resp.B : X → R) is a linear continuous operator fromX to
another̀ .c.s.P (resp.R) paired in duality withQ (resp.S), g1, k1 are extended-
real-valued convex functions onX, g2 = g∗∗2 ∈ 0(P )) andk2 = k∗∗2 (i.e. k2 ∈
0(R)).
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324 B. LEMAIRE AND M. VOLLE

In order to apply the results of Section 4, let us notice that for allx ∈ X
−g2(A(x)) = inf

q∈domg∗2
(−〈A(x), q〉 + g∗2(q)) .

Denoting byA∗ the transpose ofA we then have

f := −(g2 ◦ A) = inf
q∈domg∗2

(−〈·, A∗(q)〉 + g∗2(q)) .

In the same way,

h := −(k2 ◦ B) = inf
s∈domk∗2

(−〈·, B∗(s)〉 + k∗2(s)) .

Applying Theorem 4.2 withg = g1, k = k1 andf , h as above we obtain the
following result that extends Theorem 3.1 of [5]:

THEOREM 5.1. Assume thatg1, k1 are extended-real-valued convex functions on
X, g2 ∈ 0(P ), andk2 ∈ 0(R); then,

v(P1) = inf
(q,s)∈Q×1

max
λ>0

(g∗2(q)+ λk∗2(s)− (g1+ λk1)
∗(A∗(q)+ λB∗(s))) ,

where1 = {s ∈ S : k∗2(s)− (k1+ δdomg1)
∗(B∗(s)) < 0} .

Proof.We have hereI = domg∗2, J = domk∗2 , and for all(q, s) ∈ I×J, fq =
−〈·, A∗(q)〉 + g∗2(q), hs = −〈·, B∗(s)〉 + k∗2(s). It follows easily that the setA
defined in (8) coincides with domg∗2 × {k∗2 − (k1 + δdomg1)

∗ ◦ B∗ < 0} ; the rest
of the proof is straightforward. 2

One can complete Theorem 5.1 in two directions:
1. Assuming the existence ofx̄ ∈ domg1∩ domk1 whereg1 or k1 is continuous

we have [see (4)](g1 + λk1)
∗ = g∗1 (λk1)

∗ for all λ > 0, and(k1 + δdomg1)
∗ =

k∗1 δ∗domg1
with the exactness of the above infimal convolution:

2. Assumingg1, k1 ∈ 0(X) with g∗1 finite-valued andτ(Y,X)-continuous we
have by Theorem 4.4:

v(P1) = inf
(q,s)∈Q×1

sup
λ>0

(g∗2(q)+ λk∗2(s)− (g∗1 (λk1)
∗)(A∗(q)+ λB∗(s))) ,

with 1 = {k∗2 − (k1+ δdomg1)
∗ ◦ B∗ < 0}, a d.c. constraint.

REMARK . Of course, Theorem 5.1 specializes in various situations. For instance,
if k1 = 0 we get

inf
k2(B(x))>0

(g1(x)− g2(A(x)))

= inf
(q,s)∈Q×1

max
λ>0

(g∗2(q)+ λk∗2(s)− g∗1(A∗(q)+ λB∗(s)))

with 1 = {k∗2 − δ∗domg1
◦ B∗ < 0}.
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If, moreover,g = 0 (henceg∗2 = δ{0}) we have (extending [4, Theorem 4.1] and
[10, Corollary 4.6])

inf
k2(B(x))>0

g1(x) = inf
s∈1 max

λ>0
(λk∗2(s)− g∗1(λB∗(s))) .

5.2. DUALITY FOR MIXED D .C.-LIPSCHITZ PROGRAMS

Assume now thatX is a normed space with norm|| ||; we denote by|| ||∗ the dual
norm of the topological dualY of X: for anyy ∈ Y , ||y||∗ = sup

||x||61
〈x, y〉, and by

B ∗ the closed unit ball ofY with center at the origin. Letf be a Lipschitz function
onX with c as Lipschitz constant,g : X → R̄ an extended-real-valued convex
function, and letk1, k2,B be as in Section 5.1). We are concerned with the problem

(P2) : minimizef (x)+ g(x) for k1(x)− k2(B(x)) < 0 .

As f is c-Lipschitz one has

f (x) = inf
u∈X

(c||x − u|| + f (u)) .
Therefore we shall takeI = X and for allu ∈ I

fu(x) = c||x − u|| + f (u), x ∈ X ,

which is a convex finite-valued and continuous function onX. As in Section 5.1
we shall takeJ = domk∗2 and, for alls ∈ domk∗2, hs = −〈·, B∗(s)〉+k∗2(s) which
is either an affine continuous function or identically−∞. We have here

A = X ×1,1 = {k∗2 − (k1+ δdomg)
∗ ◦ B∗ < 0} .

Applying Theorem 4.2 we obtain

v(P2) = inf
(u,s)∈X×1

max
λ>0

(f (u)+ λk∗2(s)
+ inf

x∈X
(c||x − u|| + g(x)+ λk1(x)− λ〈x,B∗(s)〉)) . (15)

Let us introduce the functionϕu defined byϕu(x) = c||x − u||, x ∈ X, and
observe that

− inf
x∈X

(c||x − u|| + g(x)+ λk1(x)− λ〈x,B∗(s)〉) = (ϕu + g + λk1)
∗(λB∗(s)) .

Assuming that

∃x̄ ∈ domg ∩ domk1 : g or k1 is continuous at x̄ , (16)

we have (see (4))(ϕu+g+λk1)
∗ = (ϕu)∗ g∗ (λk1)

∗, (k1+δdomg)
∗ = k∗1 δ∗domg

with exactness of the infimal convolutions.
As, moreover,(ϕu)∗ = δcB∗ + 〈u, ·〉, we have proved:
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THEOREM 5.2. Letf , g, k1, k2, B be as above and assume that (16) holds; then

v(P2) = inf
(u,s)∈X×1

max
λ>0
[(f (u)+ λk∗2(s)

+ max
||y1||∗6c
y2∈Y

(〈u, y1〉 − (g∗(y2)+ (λk1)
∗(y1− y2 + λB∗(s)))] ,

with1 = {k∗2 − (k∗1 δ∗domg) ◦ B∗ < 0} .
Let us describe the formula above for the problem

(P3) : minimizef (x)+ g(x) for k1(x) 6 0

wheref is c-Lipschitz, andg, k1 : X → R̄ convex satisfying (16) and the Slater
condition{k1 < 0} ∩ dom g 6= ∅. By [5, Proposition 2.1] we then havev(P3) =

inf
k1(x)<0

(f (x) + g(x)) and, taking k2 = 0, B = 0 in Theorem 5.2, we get (since

1 = {0}, k∗2 = δ{0}, B∗ = 0),

v(P3)= inf
u∈X max

λ>0

f (u)+ max
||y1||∗6c
y2∈Y

(〈u, y1〉−(g∗(y2)+(λk1)
∗(y1−y2)))

 .

Assuming, moreover, thatg = 0 and inf
X
k1 < 0, we derive

inf
k1(x)60

f (x)= inf
k1(x)<0

f (x)= inf
u∈X max

λ>0
[f (u)+ max

||y1||∗6c
(〈u, y1〉−(λk1)

∗(y1))] ,

a duality formula for the minimization of a Lipschitz function over a convex in-
equality constraint (see [3] for the relevance of such problems). Concerning the
minimization of a Lipschitz functionf subject to a reverse convex inequality con-
straint we have, takingg = k1 = 0 andB = idX in (15), and assuming that
k2 ∈ 0(X), inf

X
k2 6 0:

inf
k2(x)>0

f (x) = inf
u∈X inf

s∈domk∗2
s 6=0

(
f (u)+ c

||s||∗ (k
∗
2(s)− 〈u, s〉)+

)

where(k∗2(s)− 〈u, s〉)+ = max(k∗2(s)− 〈u, s〉,0).

6. Conclusion

Many duality results can be derived from the general scheme we have presented in
Section 4; in a supplement of the classes of functionsf , h, considered in Section 5,
one may also consider the class of upper semicontinuous (u.s.c.) functions. Indeed,
every u.s.c. functionf on the normed spaceX which is majorized byx 7−→ c̄||x−
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ū|| + ᾱ, c̄ > 0, ū ∈ X, ᾱ ∈ R, can be written as follows (see for instance [2,
Theorem 3]):

f (x) = inf
c>c̄

inf
u∈X

(c||x − u|| + f (u)) for all x ∈ X ;

in other words, every u.s.c. functionf suitably majorized is the lower envelope
of a family of convex continuous functions. Consequently, our results can also be
applied to the minimization of the sum of a convex function and an u.s.c. function
under a d.c. inequality constraint.
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